# Quantifying how much quantum information can be eavesdropped

January 28, 2019Summary The most basic type of quantum information processing is quantum entanglement. In a new study published in

*EPJ B*, Zhaonan Zhang from Shaanxi Normal University, Xi'an, China, and colleagues have provided a much finer characterisation of the distributions of entanglement in multi-qubit systems than previously available. These findings can be used in quantum cryptography to estimate the quantity of information an eavesdropper can capture regarding the secret encryption key.

Encrypted communication is achieved by sending quantum information in basic units called quantum bits, or qubits. The most basic type of quantum information processing is quantum entanglement. However, this process remains poorly understood. Better controlling quantum entanglement could help to improve quantum teleportation, the development of quantum computers, and quantum cryptography. Now, a team of Chinese physicists have focused on finding ways to enhance the reliability of quantum secret sharing. In a new study published in EPJ B, Zhaonan Zhang from Shaanxi Normal University, Xi'an, China, and colleagues provide a much finer characterisation of the distributions of entanglement in multi-qubit systems than previously available. In the context of quantum cryptography, these findings can be used to estimate the quantity of information an eavesdropper can capture regarding the secret encryption key.

Physicists working on new ways of securing quantum encrypted messages are exploiting the fact that, at the quantum scale, a given qubit can only be entangled with one other qubit; this unique trait is referred to as monogamy of entanglement. In practical terms, the quantum rules for entanglement are explained by considering three qubits, called A, B and C, belonging to Alice, Bob and Charlie, respectively. If Alice and Bob share quantum information via a two-qubit system, called AB, they cannot share any entangled states with Charlie's qubit C.

However, there is also another kind of entanglement, called polygamy, in which qubits display partial entanglement with several qubits at the same time.

In this study, the authors develop a series of equations explaining the conditions for monogamy and polygamy, which are much better characterised than previous work. Specifically, they first investigate three-qubit systems under certain restrictions and then derive a general result for multi-qubit systems.

-end-

**Reference**

Z. Zhang, Y. Luo, and Y. Li (2019), Tighter monogamy and polygamy relations in multiqubit systems,

*European Physical Journal D*73: 13, DOI: 10.1140/epjd/e2018-90563-2

Springer

## Related Quantum Cryptography Articles from Brightsurf:

Theoreticians show which quantum systems are suitable for quantum simulations

A joint research group led by Prof. Jens Eisert of Freie Universität Berlin and Helmholtz-Zentrum Berlin (HZB) has shown a way to simulate the quantum physical properties of complex solid state systems.

New evidence for quantum fluctuations near a quantum critical point in a superconductor

A study has found evidence for quantum fluctuations near a quantum critical point in a superconductor.

Quantum simulation of quantum crystals

International research team describes the new possibilities offered by the use of ultracold dipolar atoms

Quantum machines learn "quantum data"

Skoltech scientists have shown that quantum-enhanced machine learning can be used on quantum (as opposed to classical) data, overcoming a significant slowdown common to these applications and opening a ''fertile ground to develop computational insights into quantum systems''.

Simulating quantum 'time travel' disproves butterfly effect in quantum realm

Using a quantum computer to simulate time travel, researchers have demonstrated that, in the quantum realm, there is no 'butterfly effect.' In the research, information--qubits, or quantum bits--'time travel' into the simulated past.

Orbital engineering of quantum confinement in high-Al-content AlGaN quantum well

Recently, professor Kang's group focus on the limitation of quantum confine band offset model, the hole states delocalization in high-Al-content AlGaN quantum well are understood in terms of orbital intercoupling.

Quantum classifiers with tailored quantum kernel?

Quantum information scientists have introduced a new method for machine learning classifications in quantum computing.

A Metal-like Quantum Gas: A pathbreaking platform for quantum simulation

Coherent and ultrafast laser excitation creates an exotic matter phase with spatially overlapping electronic wave-functions under nanometric control in an artificial micro-crystal of ultracold atoms.

Quantum leap: Photon discovery is a major step toward at-scale quantum technologies

A team of physicists at the University of Bristol has developed the first integrated photon source with the potential to deliver large-scale quantum photonics.

USTC realizes the first quantum-entangling-measurements-enhanced quantum orienteering

Researchers enhanced the performance of quantum orienteering with entangling measurements via photonic quantum walks.

Read More: Quantum Cryptography News and Quantum Cryptography Current Events

A joint research group led by Prof. Jens Eisert of Freie Universität Berlin and Helmholtz-Zentrum Berlin (HZB) has shown a way to simulate the quantum physical properties of complex solid state systems.

New evidence for quantum fluctuations near a quantum critical point in a superconductor

A study has found evidence for quantum fluctuations near a quantum critical point in a superconductor.

Quantum simulation of quantum crystals

International research team describes the new possibilities offered by the use of ultracold dipolar atoms

Quantum machines learn "quantum data"

Skoltech scientists have shown that quantum-enhanced machine learning can be used on quantum (as opposed to classical) data, overcoming a significant slowdown common to these applications and opening a ''fertile ground to develop computational insights into quantum systems''.

Simulating quantum 'time travel' disproves butterfly effect in quantum realm

Using a quantum computer to simulate time travel, researchers have demonstrated that, in the quantum realm, there is no 'butterfly effect.' In the research, information--qubits, or quantum bits--'time travel' into the simulated past.

Orbital engineering of quantum confinement in high-Al-content AlGaN quantum well

Recently, professor Kang's group focus on the limitation of quantum confine band offset model, the hole states delocalization in high-Al-content AlGaN quantum well are understood in terms of orbital intercoupling.

Quantum classifiers with tailored quantum kernel?

Quantum information scientists have introduced a new method for machine learning classifications in quantum computing.

A Metal-like Quantum Gas: A pathbreaking platform for quantum simulation

Coherent and ultrafast laser excitation creates an exotic matter phase with spatially overlapping electronic wave-functions under nanometric control in an artificial micro-crystal of ultracold atoms.

Quantum leap: Photon discovery is a major step toward at-scale quantum technologies

A team of physicists at the University of Bristol has developed the first integrated photon source with the potential to deliver large-scale quantum photonics.

USTC realizes the first quantum-entangling-measurements-enhanced quantum orienteering

Researchers enhanced the performance of quantum orienteering with entangling measurements via photonic quantum walks.

Read More: Quantum Cryptography News and Quantum Cryptography Current Events

Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.